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STMMARY

The stability of systems containing a heat source is examined from
the energy point of wiew. Rayleigh's criterion is derived. In the case
of a flame, it is found that Rayleigh's criterion must be modified slightly
1f the specific-heat ratios ¥ of the burned and unburned gases are
different.

INTRODUCTION

It has long been known that osclllabtory phenomens are of common
occurrence in systhems contalning an energy source, whether it is distrib-
uted in space or concentrated in & limited region (e.g., in a plane or
& surface). Some typlecal examples are the screaming and chugging of
afterburners and combustion chambers, as well as the more classlcal
examples, such as the Rijke tone, the singing flame, end the oscillsbory
flame propagation in a tube. Generally spesking, the phenomena possess
two characterlistics. Filrst, en osclllstion is bullt up without any appre-
cleble external excitation. Secondly, after the oscillabion has incressed
to a certain amplitude, it is maintained in this state (unless the system
breaks down before this state 1s attained).

A dynamical system will start Ho oselllate wlth increasing amplitude
only if energy is fed into the system in such a way that there 1s a net
increase of the tobtal mechanlcal energy of the system after each cycle
of oscillation. The vibration is finally maintained at a glven level
when the mechanical energy fed Into the system per cycle of oscililatlon
is just equal to the sum of that dissipated by viscosity and that radiated
awey from the system per cycle of oscillation. When the amount of energy
released per second is controlled by an exbernal agency and is independ-
ent of the fluctuation lnside the system,, the oseillation wilill bullid wup
when the energy is released at certeln characteristlc frequencles. Such
a phenomenon is usually descrilbed as resonance. On the other hand, if
the system itself contains an energy source with the property that the
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amount of energy release depends upon the fluctuation inside the system,
an accidental small disturbance lnside the system may interact with the
energy source in such a manner that mechanical energy will be fed into
the disturbance per cycle of oscillation, bullding up 1ts amplitude to
an gppreclable extent. Depending on the nature of the response cf the o
energy source to the disturbance, the interaction of the two may lead to

8 buildup or damping of the oscillatlon in the system. When the oscil-

lation does bulld up, the phenomenon is usually descrlbed as instability.

It is the purpose of thils analysis to study the conditions under which

systems containing heat sources may be expected to exhiblt instability.

To illustrate more preclsely what has been described and also as an
introduction to the problems proposed for study, consider a specilsal
example. Consider a tube of length I. with open ends. Let the orlgin
of the coordinate system be chosen at one end of the tube with the x-axis
parallel to the wall of the tube. Let @Q(x,5) be the rate of heat release o
to the medium per unit volume per unit time at the point x and at the
instant +t. Iet ) be the speciflc heat at constant pressure of the
gas 1n the tube and Ty be the temperature of the gas when @ = 0. If
Q JepTo and its time derivative are "smell," the pressure fluctuation in .

the tube will also be small and is governed by the equation

i&_&=i<_a_) (18)

where P = 8p is the pressure fluctuation (above the mean pressure p,),

7 1is the specific-heat ratio, and c¢ 1is the velocity of sound (see,
e.g., ref. 1}). At the two ends of the tube, there existe the condition

P=20 (x =0, x=L) (1b)

for all values of +. If Q{x,t) is a given function of x and 1%,
the nonhomogeneous term at Ehe right of the equation is known and repre-

sents the "forcing function” or "source distribution."” The problem is
then one of forced oscillation. If the initlal conditions are specifiled,

for example,

(P)t_o 4 (x) .

oP _
<§°—)t=o = £o(x)

/
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a solutlon can be constructed readily. It can be easily shown that when
Q(x,t) is periodic in + with a perlod commeasurable with the natural

- period of the tube, that is, &ZL/fc, the amplitude of a mode of oscllla-
tlon will increase linearly with time. This is the resonance phenomenon.,
Now, 1if the rabe of hest release Q 1s not a prescribed functlion of x
and t but is given in terms of the fiuctustions in the system, for
example, @ 1is directly proportional to the pressure fluctuation P,
the differential equation governing ‘the pressure £ield becomes a homo-
geneous equetion. Thus, if

% - xp (22)

then equation (la) becomes

- jL.éEE._ §E§.= Xk QE (2b)

The solution of this equation satisfying boundary condition (1b)} and
initial conditions (lec) is

eBkb o
P=e 2 > (An cos apb + By sin ayt)sin == (2¢)
n=1 L
where

2 N

el kK2
w=\[32) -5 (2)
. -efo()sinP-“‘—x-dx (2¢)

Ap = I 1X T,
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L
By = ﬁf(‘) l:fg(x) - %E fl(x):l ein % dx (2£)

From equation (2¢) it 1s seen that, if k > O, the initial disturbances
will grow exponentislly wlth the time + and such a system is unstable.
If k <0, the solution clearly shows that the system is stable to small

disturbances.

The same conclusion can be arrived at more sirply by using the for-
mal method of stabllity analysis. As usual a disturbance of the form

P = elBby(x) is assumed. To satisfy the differential equation it is
necessary to have

¥(x) = A cos A(B)x-+ B sin AB)x (2g)

where A and B are constants and

2
A(B) = \/’i‘a‘ + 1B (2h)

To satisfy the boundary condition (1b), it is necessary that A=0
and A(B) = -1-%‘-, n belng a posiltive inbeger. Solving for B from the

second condition glves

2
Collix *
2

Bn

— kei *ay (23)

Consequently, if k > 0, both roots have the property that Im Bp < O;
if k=0, Imp,= 07 and if k < 0, both roots_are such that Im B, > O
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where TIm indicates imaginary roots. Since P = elBty(x), the system

is unstable for k > 0, but stable for k< 0. In this formsl ansalysis,
usually no time is teken to satlsfy the initial conditions (le) in the
belief that these Initial conditions cen always be satisfied by the super-
positlon of the assumed form of disturbances. In the present analysis,
this is indeed the case since the eigenfunctions ¥(x) corresponding %o
n=1, 2, . . . form a complete orthonormal set in the interval

0< x< L. : :

In the sbove example, when the system is unstable (i.e., k > 0),
the amplitude of the fluctuation grows exponentially with time withoutb
ultimately settling down into a state of permsnent oscillation of con-
stent smplitude (i.e., into a limit cycle). If, however, the rate of

.
i

heat release qQ dis related to the pressure fluctuation by
- E(PPOE - % P5) (32)

where € and Pg are two positive quantities, instead of by equa-

tion (2a), the differential equatlon governing the pressure fluctuation
becomes

— m— - — 2 E(P02 - P2 %% (3b)

Any small disturbances will at first be amplifled exponentialiy and will
ultimately settle down into a limit cycle since e(Po® - P2) is positive
for ‘Pi < Pp &and becomes negabtlve for lPi > Pg. This is & case of
selfsustained vibration of large amplituvde. This particular system clearly
corresponds to the limit of & very large number of identical Van der Pol
osclllators linearly coupled together to form a contimmum. It mey be of
some basic interest to study more closely a nonlineasr system like

equation (3b).

In the above examples, heat ls released at all points in the tube.
If heat is released in a portion of the tube or concentrated 1n a narrow
region, similar analysis applies. However, the calculetlon is, as a rule,
longer and the simplest method of attack is probaebly the formel stability
analysis. However, with each slight change in the geometrical arrangement,
for example, the extent and connectivity of the region in which heat is
released, a new calculation must be performed. In this sense, the above
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analytlc epproach is not wvery sabisfactory although it does provide

quantitative information as to the rate of amplification of the disturb-

ance. For many purposes, however, precise quantitstlve informatlon 1s .
not so important as having a qualitative ldea as to whether a system may

or mey not be stable and why it is so. The latter is indeed the more

important if the fundamental physical principles involved are to be under-

stood. It 1s toward thils goal that the study in the remainder of this

reper is directed. e _ . S

The present investigation was conducted at the Department of
Aeronautics of The Johns Hopkins University under the sponsorship and
with the finsncial assistance of the National Advisory Committee for
Aeronsutics. : .

SYMBOLS
A cross-sectlonal area of tube
A constant .
Ag flame area
A, defined by equation (2e) )
B constant . - I B e
Bn defined by equation (2f)
Cp specific heat at constant pressure
c velocity of sound
E total energy, Kinetic energy + Potential energy
f1(x),fo(x) arbitrary functions
h location of heater S : : - C e
k proportionality constant
L lengbh of tube . : .
n positive integer

P pressure fluctuatlon above mean level
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Po positive quantity

P pressure

Q,a(x,t) heat release to medium per unit volume per unit time
Q heating value of mixture

R gas constant

Sg, apparent flame speed

Sy flame speed

T temperature

To temperature when Q = O

t time

u velocity

X space coordinste

B,Bn parameter

¥ gpecific-heat ratioc

A increment of total energy after one cycle of oscillation
8( ) increment of ( )

€ position quantity

AB) defined by equation (2h)

o] density

¥(x) eigenmode

w rate of heat release per unit cross-sectional area of tube
Wy value of « when there is no disturbance

wp defined by equation (2d)
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Subscripts:

1 conditions upstream of heat source

2 . conditions downstream of heat source
h . conditions at heat source

i condltions at inlet end of tube

RAYLEIGH'S CRITERION

In explaining the process of maintenance of_vibration by heat,
Rayleigh (ref. 2, pp. 226 and 227) states that if heat 1s periodically
communicated to and abstracted from a mass of alr vibrating in a cylinder
bounded by a piston, for example, the effect produced will depend upon
the phase of vibration at which the transfer of heat takes place. If
heat is given to the alr at the moment of greatest condensation or is
taken from it at the moment of grestest rarefaction the vibration is
encoureged. On the other hand, 1f heat 1s given at the moment of greatest
rarefaction or abstracted at the grestest. condensation the vibration is
discouraged; however, there 1s no effect in encouraging or discouraging
the vibration if the air concerned is at a loop, that is, a place where
the density does not vary, or if the cormumication of heat is the same
at any stage of rarefaction as at the corresponding stage of condensation.
Rayleigh went on in applylng this criterion to explaln the singing flame
and Rijke's tone. He was able to give a véry satisfactory account of the
obgerved effect of tube length on the excitation of singing flame and the
effect of the position of the heater in the Rijke's tube in the production
of Rijke tone. (See pp. 229 to 230 and 232 to 23% of ref. 2.)

In most later investigations on the maintenance of vibration by heat,
Rayleigh's criterion has been guoted (e. g., refs. 3 to 7). Rayleigh him-
self did not show how he arrived at such an apparently rather general
statement. Noting this deficiency, Putnam and Dennis proposed a proof
which many find hard to believe (see appendix of ref. 3). Their proof
is not wrong, but it contains sc many plausible hypotheses of a mathe-
matical nature that one 1s not sure if the physical conclusion it purports
to prove is not more plausible than the mathematical hypotheses used.
However, Putnam and Dennis did put Reylelgh's criterion In a very precise
form: Mathematically, and neglecting demping forces, Raylelgh's criterion
requires that the time integral, over a cycle, of the instantaneous prod-
uct of the rate of heat release and of the oscillating component of the
pressure be greater than zero (ref. 3).1

lThe criterion in this form was also independently suggested by Balley
(see p. III.9 of ref. 6).
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An explasnation of Rayleigh's criterion on a physical basis will
make it quite clear why the criterion is in fact a very plausible one.2
For convenience of explangtion, consider a tube of finite length. Divide
the tube into many fictitious compertments (say of equal size) in one of
which heat is being added periodicelly from an externsl source. This is
illustrated in figure 1 where the compartments are separated by planes
(shown as dashed lines in the figure), while the shaded compartment bounded
by the planes marked A and A' 1s the one in which hest is being added.
In the absence of viscosity and heat conductivity, there 1s no loss of
generality by replacing the fictitious planes A and A' by two solid plane
surfeces (or "pistons™) provided that these walls always move in synchro-
nism with the motion of the fictitious planes A and A'. The other com-
partments serve, as 1s well known, as & mechanical spring-mass system
(or fiywheels in the engine anslogy) where mechanical energy produced by
the "engine" compartment can be stored. The work done by the engine can
be easily calculated from the PV-diagram. Depending on when heat is
added and subtracted during each cycle of vibratlon the amount of mechan-
ical work produced is greater than, equal to, or less than zero; this
determines whether mechanical energy ls given to or extracted from the
spring-mass system (i.e., the flywheels). For the case when the amount
of heat energy released by the heat source depends on the magnitude of
fluctustion in the system and is zero when there ls gbsolutely no fluctua-
tion in the system, the initial disturbances act as ‘an "engine starter."
It is at once clear from the PV-diagram that 1f heat is added when the
pressure In the engine i1s the highest and tsken away when the pressure
in the engine is the lowest, the maximm asmount of mechanical work is
obtained. This is in fact identical to Rayleigh's statement that if
heat is glven to the alr et the moment of greatest condensation or is
taken from it at the moment of greatest rarefaction the vibration is
encouraged. Furthermore, 1t is alsc clear from the englne anslogy that
the real criterion of amplification of a disturbance 1s that the net
mechanical work done by the engline per cycle must be greater than the
loss through viscous dissipation and, hence, must at least be greater
than zero. This is also in accordance with Raylelgh's remark that there
is no effect (of encouraging or discouraging the vibration) if the air
concerned is at a loop, that 1s, a place where the density does not vary,
or if the commumication of heat is the same at any stage of rarefaction
as at the corresponding stage of condensatlon.

It is possible to put the above criterion in s mathematical form.
The result of this calculation leads to the formulation by Putnam and
Dennis of Rayleigh's criterion. Since this calculation will appesr as
g particular case of the analysis of e more useful system discussed in
the next section, the details will not be given here.

2The suthor is indebted to Prof. Leslie S. G. Kovésznay for this
explanation.
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In the exasmple just presented, heat must be added as well as sub-
tracted from the "engine compartment" 1f the state of the gas inside the
compartment is to be brought back to its initlal state after each cycle.
The heat subtracted is, of course, less than the heat added if the engine
produces a net positive amount of mechanical work every cycle. The heat
subtracted corresponds to the heat rejected .in an actual engine. To be
sure, for most practical cases, the gas in the engine compartment instead
of returning to its 1initial state at the end of a cycle ends up at a tem-
perature slightly higher than its original temperature. This cuts down
the mechanical output of the engine in the next cycle and sometimes also
reduces the amount of heat given to the engine (e.g., when the rate of
heat transfer depends on the tempersture of the medium as in the case_ of
conductive heat transfer). These are precisely some of the factors which
will eventually l1imit the amplltude of the osclllation to finlte size and
account for the selfsustained vibratlon (i.e., limit cycle) which is often
observed in experiments on such systems.

When heat is not added to the gas in the limited region as shown in
figure 1 but 1s distributed throughout the tube, the same argument applies
except that it 1s necessary to think In terms of a multicylinder engine
rather than a singlé-cylinder engine doing work on g spring-mass system.
In fact, when the ampiitude of the oscllletions 1s small this case can
alwvays be anslyzed by & superposition of the previous case.

The only drawback of the engine arnalogy 1s that 1t cannot be extended .
gimply to the case when there is a constant current of alr through the
tube and when the heat added to the medium fluctustes with the disturbance
in the system above some nonzero mean value. It is clear that the heat
added to the system can be decomposed into two parts, a steady component
(i.e., a direct-current component) which maintains a given temperature
distribution inside the system and & varying component (i.e., an
alternating-current component) which feeds energy into the dlsturbance.
The heat energy that has been given to the disturbance appears in two
forms: The pressure waves which carry the mechanical energy into the
rest of the system, and the entropy spots which are carried away by the
draft and represent the amount of energy going into the heating of the
gas above the mean tempersture distribution. The latter is therefore
unavellable for doing mechanlcal work. In such a case, the entropy spots
carried away by the draft will be the counterpart of the heat energy
rejected by the engine. It 1s possible to study the energy transforms-
tlon and, in particuler, the total smount of the mechanical energy stored
in the system per cycle of vibration from s purely analytical standpoint
(i.e., without appealing to & physical model}. This will be done in the
following sections. The physical model, however, is useful in Inter-
preting the analytical formuletion and conclusions.



NACA RM 56D27 11
ANATYTTCAL. FORMULATION

It 1s the purpose of the present analysis to establish the condition
under which a small disturbance is amplified in the course of time by its
interaction with a heat source. Though the znalysis is restricted to
small disturbances for analytical reasons, the derived condition is never-
theless useful in practice since small disturbeances always exist In any
physical setup and also because in most cases a large disturbance does
not disappear without first becoming small.

FPor definiteness, consider s gaseous medium in a tube of length L.
The origin of the coordinate axis 1s chosen at one end of the tube and
the x-axls, parellel to the wall of the tube. The two ends of the tube
will then be given by x =0 and x = L. The heat source is assumed to
be concentrsted in a single plane at x = k.3 Tt is further assumed that
there is & constant current of alr through the tube flowing into the tube
from the end x = 0 with & speed much smgllier than the local speed of
sound. Finally, it 1s assumed that in the sbsence of any disturbance
the heet source is releasing energy at a rate of w, wunits of heat per

second per wnit of cross-sectional area. As a result of the heat sddi-
tion, the state of flow ahead of and behind the heater will not be the
same. Let p3, py, Ty, end u; denote, respectively, the pressure,
density, temperasture, and veloclty of the undisturbed medlum upstream
of the heat source (i.e., for 0< x< h), while D5, 0y, Tp, and u,

denote, respectively, those downstream of the heat source (i.e., for
h< x< L; see fig. 2). These quantities are relsted by the continulty,
momentum, end energy equations across the heater which are

Pt = Pl (ka)
Py + oyw 2 =1, + P (¥b)
ool 1) mmfem o3

In case the heat source is a flame front which propagates with a flame
speed St relative to and ageinst the oncoming stream, the heat source

Srhis assunption by no means Iimits the generality of the results
obtained below since, for small disturbances, a continuously distributed
heat source can always be regarded as a superposition of a large number
of concentrated heat sources.
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will be seen to have an apparent veloclty Sg (taken as positive if the
heat source moves forwsrd against the oncoming stream) given by

Sa = 5¢ - (58)

In such case, equations (4) must be replaced by the following equations:

p]_(u:L + Sa) Polus + Sa) (5p)

pl + pl(ul + Sa)‘? P2 + p2 (112 + Sa)g (50)

Wwg = pg(ug + Sa)l:cPETe + -]2=(u2 + Sa){l - pl(ul + Sa) [CP]_T}. + %(ul + Sa)e]
(5a)

Evidently, the system given by equations (4) can be considered as & par-
ticular case of the gystem given by equations (5); for, if 8¢ =u; in

equation (5a) it is found that Sz = O and equations (5) reduce to equa-
tions (4). Consequently, only system (5) needs to be considered.

If 1, P, Ty, By, g, and S are asgsumed to be given, then
equations (5a) to (54}, together with the gas law

Py = szgTE (5e)

will ensble calculation of the five unknowns D5, pp, To, uy, and Sg.

In particular, it can be easlly verified that (u2 + Sa)/<}72R2T2 is of
the same order of magnitude as (Fl + Sa)/ﬂflelTl. Consequently, if the

velocity of the direct current through the tube and S; sare small com-

pared with the local sound speed (so that terms which are of the order
of the square of the Mach numbers can be dropped), equations (5) can be
reduced to
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pl(ul + Sa) = 92(112 + S&) (65-)
Py = Po : (6éb)
72 71
- - — 6
®o " p2(u2 + Sa) — pl(ul + Sa,) (6c)
where
Py = PRTH (6e)

Now, suppose that there are some disturbances inside the tube. Let
the pressure, density, temperature, and velocity of the medium upstream
of the hest source at the point x and instant t be denoted by
Py + Bpy, P31 + B0y, Ty + 8Ty, and wuy + Buy; while those behind the
heat source are denocted by Po + '5p2, po + 892, T.?. + 8’1‘2, and us + 8u2.
Sp &p ST su Sp

1 L 1 l‘1 2

P’ P T ey’ pe
5pp  BTp Buy )

If the disturbances are weak (i.e. , 1t

y ——, and ~—— K 1, where c dJdenotes the velocity of sound)], the
P2 T2 c2

energy in the disturbances can be decomposed into two parts: The kinetic
energy is given by

h L
%—- plw/; (Sul)EA dx + 32- QZA (5u2)2A dax (Ta)

(A being the cross-sectional srea of the tube) and the potential energy
is glven by
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- b rsp) ¥ : L /s
2 0 \ 7P 2 n \72P2

(see, e.g., pp. 17 and 18 of ref. 2). The total energy in the disturbances
is the sum of these two equations. If the total energy In the disturbances
increases after each cycle of oscillation (described subsequently), it is
said that the disturbance is amplified by the heat source. Now, it is a
well-known fact that the surface integral of the product of the pressure
and the velocity component in the direction of the normal of a control
surface 1s related to the rate of change of energy inside the system.

(See, e.g., ref. 8.) This suggests the following calculation.

Consider a control surface shown by dashed lines in figure 3. It
consists of two compartments: The first encloses the medium ahead of
the heat source, and the second encloses the medium behind the heater.
Consider the first compartment. If the subscripts h 'and 1 are used
to denote the condition of flow at the heat source and at the inlet end
of the tube, respectively, the following identitles are obtained: '

i

fo o [(pl + 6p1) (“1 + 5u1)]

I:(pl + 8p;y, —g; (“1 + 6u1) +

(Pl + E’Pl)h(“l + aul)h - (Pl + Bpl) 1(""1 + Bul')i

(vt Sul) g—x (pl + 5pl)] ax
= Pl[(aul)h - (5“'1\}1] + ul[(apﬂh - (SPI.)_’;I +

| J;h[(apl) g_x (uy) + (5uy) g—x- (apl)] ax

that is,

(5P1)h(5u1)h - (5P1)1(5u1)1 = j;h [SPl g;' (5111) + Buy g—; (5P1):| dx

(8a)

L4
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When the inlet end 1s open, ( E’Pl)i = 0; hence,

(SP:L)h (Iéul)h = J; . [Spl -g—x- (5111) + duy g—x- (Spl)jl dx (8b)

(This formula is still true if the inlet end is closed since (Sul)i = 0.}

Likewlse, if the compartment of the control surface behlind' the heater
is considered,

Eradu(eva)e= -, [or2) & (o) + (5) 5 (o)) o= o0

It follows from the last two formulas, equations (8b) and (8c), that

(sz)h(aua)h - (SPl)h(Sul)h = - fo h[aPl g; (5‘11) + Buy %; (5P1):l dx -

J;l L [6392 %}_{ (aua) + Buo :—x- (8;92)} dx
(83)

Note that this equation is exact for tubes with open (or closed) ends;
that is, no neglection has been made. MNext, the simplifying assumption
that the disturbances in the system are small is introduced into equa~
tion (8d). Tt will be shown that the right-hand side of the above
expression gives precisely the rate of increase of total energy Inside
the tube if the Mach muber of the steady current through the tube is
of the order of mesgnitude of 0.0l or less {e.g., if wy < 10 fps, and

e} = 1,000 fps, then ’i—i—g 0.0l). For such low Mach numbers, the hydro-

dynamic egquations governing the disturbance can be written simply as

3_ (%P1 3 (Bua)_
ot <pl>+cl Bx(cl)—o (98)
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d (B d (%P1
— —— + C — — = 0 b
ot ( cl) T (711)) (0)
é_ isp_l - é_ ari. = Q (gc)

t \ Pq ot \ 7Py
5Tl _ Spl 5{31 (95_)

for the region ashead of the heat source. ILikewlse, similar equations
(with subscript 2 instead of 1) hold for the region behind the heat

source.

Consider the first integral on the right-hand side of equation (84)..
The following equation is obtained by use of eguations (93):

h h o)
- l; [5pl g;.(éul) + Su% %; (apli] dx = JQ 8Py g; C?Eiz) +

72P1 (aul) g; (aul) dx

% pl(Bul)a} ax (102)

and gives the rate of increase of the disturbance energy (per unit cross-
sectional area of the tube) in the region shead of the heat source.
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Likewlse,

2
L ~L
_‘/; [%pz %; (5u2) + Bduy g; (Bpej] dx = %E N %-géggg—-+ %-p2(§u2)2 dx

(100)

gives the rate of increase of the dlsturbance energy (per unit cross-
sectional area) in the region behind the heat source. Substituting equa-
tions (10a) and (10b) into equation (8d) leads to the following conclusion:
The rate of iIncrease in the total energy E in the disturbance is given

by

2 (2) = &(om2),, (u2), - (0), (o), ()

Next, the right-hand side of the above equation must be evalusted in
terms of the rate of heat release at the heat source. Since equations (6)
are the mathematical representations of the conservation laws st the heat
source, they must be satlisfied st all instants provided that instanbaneous
values of the pressure, velocity, and other physical varlsbles are used
instead of py, w, end so forth. In particular, equations (6b) and (6c)
must be satisfied; thet is,

P1 + 8Py = Po + Bps (12a)

u.b+8<1)=77—21(pg+5p2)(u2+sa+‘6u2+55a) -
- -

7
— = - (py + 81} (w1 + Ba+ Buy + 85a) (12p)
L -

In writing the second equation, allowance has been made for the change
in the rate of heat relesse with the fluctuations at the heat source.
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Since these relations are valld only at the heater, the subscript h
should have been used to indicate thils fact. However, for the sake of
simpllcity, this subscript will not be attached to the varlous varilables
involved until the finsl result is obtained (i.e., egs. (13)). Making
use of equations (6b) and (6c), the last two equations can be rewritten

as
&pp = Opp (12(:)

S 72 Bdup, + 8Sg 71 duy + 85y .

Picy B 7o - 1 cy 7 - 1 ey

7o Bpo gua + Sa) + (aue + asa) )
72 - 1o cq

71 Op1 (ul + Sa) + (Bul + SSa)
7 - 1 Py C1

(123)

Equation (12b) has been put in a nondimensional form so that the order
of magnitude of the various terms can be readily compared. If terms
3) & su Bu. u:
which are products of the small quantities Pl, Pa, l, 2, —l,
P P2 c  cp

up ok ’
and 7y are dropped,  equation (12d) becomes

Yo Bup + BS 7y Buy + 8S
3w 2 9% a N 1 a (12¢)

Py Y2 -1 ¢y L-1  cy

l"No’ce that this is the same assumption which was used In deriving
equations (9).
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Introducing now the subscript h to indicate that these relations are
valid only at the heat source, equations (12c) and (12e) can be rewritten
in the form

(ep2)y, = ( 5e1 )y (13a)

72 - 1 50 70o-1 71
(13b)

Substituting equations (13) into equation (11) gives the important
relation

g;_ (E) = A(Spl)h{za:j - (1 - 72~ )(Sul + asa)h‘l (1%)
dt S \ .

£

212

‘,._l

Now, if the energy in the disturbance after each c¢ycle of osclillation

is examined.,5 the disturbance 1s sald to be encouraged by the heat source
if the total energy in the disturbance at the end of the cycle 1s greater
than that at the beginning of the cycle. If the increase of the dis-
turbance energy after each cycle of osclllation 1s denoted by A, the
following equation results:

a-lezly [ (mhlte)
72 Cycle Py

¥

o r2-1 /‘ (
1- T Spl (5111 + ssa)h dt (15)

JSince the motion is not strictly periodic (i.e., the motion does
not repesat itself exactly after a certain interval), the term "cycle of
oscillation" must be clarified a little. It can be conveniently defined
as the interval between two successive times &t which (Spl)h =
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When the varlous forms of losses in the system are negligible, the con-
dition that a disturbance is amplified by the heat source in the course

of time is then
A> O (16)

If A<O0, small disturbences In the system are damped by its interaction
with the heet source. If A= O, the heat source neither encourages nor
discourages any disturbances. (It merely modifies their wave form.)

In the next sectlon, the above results are applied to a few special
cases.

APPLICATIONS

The results of the foregoing snalysis can be applied immedlately
to two special cases of practical interest:

(1) When the heat source 1s a plane heater and there is a current
of air through a tube with Mach numbers of the order of magnltude of O. Ol
or less.

(2) When the bheat source is a flame front.

Plane Heater

In the case of a plane heater the ratlos of the specific heat at
constant pressure to the specific heat at constant volume of the medium
ahead of and behind the heater may be teken as the same (i.e.,
7L = 72 = 7). Equation (15) then becomes

7" 4 (8p1)n(Bw) db (a7)

7 Py Y Cycle

Disturbances in the tube will be amplified 1n the course of time if

A> 0. This is Rayleigh's criterion in the form first suggested by Putnam
and Dennis (ref. 3). It states that if the time integral of the product
of the pressure fluctuation and the fluctuation In the rate of heat

release over a cycle of oscillation is greater than zero, the disturbance
is amplified; if the integral is less than zero, the disturbance 1s damped;
if the integral is zero, the disturbance is neither amplified nor damped

by the heater.
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Since neither «p nor wuj enters into equation (17), the above
conclusion epplies equally well to the case in which an = 0

and/or vy = 0, that is, tie case where there is no current of air
through the tube and/or there is no steady component of heating.

Flame Front

In the case of the flame front, ¥; i1s, in general, different

from 95. Furthermore, from the definition of the flame speed and equa-
tion (6d), :

Buy + BSg = 8BSy (18)

Hence,

-t f (0w )p (B0) at -
72 Cycle 1

- A 8pq ). 8S¢ dt (19)
< -t 7 ) Cycle (®e2)y

This formula for the increase of total energy per cycle of oscillation
is strictly true for a plane flame front propageting at a speed of the
order of magnitude of 10 feet per second or less. Physlcally, 1t seems
probable that 1t may perhaps also be applied to a nonplanar flame front
when the axiel extent occupled by the curved flame front is small com-
pared with the length of the tube, provided that &w is inberpreted as
the change of total heat relemse per second per cross-sectional area of
the tube (see ref. 9). Since the rate at which heat is released by a
fleme front (plsne or nonplanar) is equsl to the product of the flame
area, the flame speed, the density of the fresh gas, and the heating
value of the mixture, any changes (induced by the fluctuation in the
system) of any of these varlables will cause a change in the rate of
heat release per unit time per unit cross-sectional area of the tube.
In fact, since ap = AfStQpl/A, the effect of a change In the flame

area Ap and the flame speed on the rate of heat release is, to the

order of spproximation which hes been used in deriving equations (12e)
and (9), given by :
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So %6 3 %, %% 9 A (20)

The effect of changes 1n the heating value on &w has been ignored here
mainly because 1t is normally very small. Substituting equation (20)
into equation (19) gives

e, -3,
A=-2__ 2 g 8p1), BAr At + [—= - 1]A 8pq ), 85¢ dt
& (Bp1),BAr 4t + <Pz oyele (8r2),58% @

7o RTy Cycle
(21)
where use has been made of equations (6a), (6c), and (6d) and
Wy = AfSyQpy A to establish the relation
-1 3 7 7 -1 p
2-% 9§ A 14— ‘2 =L _1 (22)
2 RBT; A n-1 72 e

employed in simplifying the result of the substitutlion. Consequently,
if the pressure fluctuation is positively correlated® with the fluctua~
tlons in the flame aree and flame speed, vibration is encoureged. If
they are negetively correlated, vibration is discouraged.

In the study of the stabillty of systems containing a heat source,
the basic problem is then to determine the response of the heat source
to the disturbances. Detailed analysis of the dynamlc characteristics
of the hest source 1s usually very difficult. The major contribution
of Carrler in the study of Rijke tone 1s precisely in this direction
(see ref. 10). When a detailed analysis for a particular system proves
to be too complicated (as 1s usually the case when a flesme front is
involved), the dynamlc response of the heat source can often be assumed
if the study is accompanied by experimental investigations. The excel-
lent work of Beiley (ref. 6) is a typical example of this approach and
another example can be found Iin reference 7. 8Still snother example in
this connection can be constructed by making use of the experimental data
of Kaskan (ref. 3). In his study of oscillatory flame propagation in

6Two variables are said to be positively correlated 1f the time
integral of their product over & cycle of oscillation is greater than

ZeI'0.
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tubes, Kaskan proved beyond any doubt that in such & case the vibration
is emplified mainly because of the proper phasing of the change of the
flame areas with the pressure f£luctuation. He went on to propose a mech-
anism which explains this interaction between the flame front and the
pressure waves. Kaskan's plcture of the interaction is essentially as
follows: When & flame extends iltself into the osecillating boumdary layer
near the wall, the motion of the central portion of the flame front is
much greater than that inside the boundary layer. Consequently, there

is a change in the f£lasme area whenever there is an ascoustical oscilla-
tlion in the tube. This picture of the interaction is supported further
by the experimental evidence that if the oscillatory frequency is so
high and, hence, the boundary layer is so thin that the quenching distance
of the fleme near the wall 1s greater than the boundary-lsyer thickness
(i.e., the flame does not extend itself into the boundary layer), then
there is no change in flame area with any acoustical oscillation inside
the tube and there 1s no evidence that the small disturbances are ampli-
fied and that the flame vibrates. The excellent experimental study of
Kaskan should be followed up wlth a theoretical study of this phenomenon.
The main question then is to calculate the flame configuration (and, hence,
the accompanying rate of hest relesse) in an oscillating flow inside a
tube - much in the same spirit of Carrier in his study of Rijke tone.

The difficulty here is that even an aspproximate calculation of the flame
configuration proves to be too complicated. However, a very crude esti-
matlion of the rate of heat releasse at the flame front can be made on the
basis of Kaskan's results. Thus, by msking the two assumptions (1) The
flame configuration remains essentially similar during its vibration so
that the flame arés at any instant is proportional to the height of the
curved flame snd (2) the central portion of the flame moves back and
forth as if there were no boundery-layer effects while the edge of the
flame in the boundsry layer only moves forward with a constant velocity
equal to the mean -speed of propagation of the flame, 1t is easy to show
that the change in flame area is directly proportiomsl to the fluctuation
in the displacement of the fluild particie at the flsme front. This can
serve as & starting point of a theoretical calculation of the oscillatory
flame propagation in tubes along & line similar to that Balley has fol-
lowed in reference 6.

The Johns Hopkins University,
Baltimore, Md., May 31, 1955.
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Figure 1l.- Sketch showing engine analogy. Dashed lines indicated planes
separating compartments.
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Figure 3.- Control surface shown as dashed line (two compartments).
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